Civil Eng	ineering Stream (Chemistry grou)))	
Course Title. Chemistry for Civil Engineering Stream			
Course Code:	22CHEE12/22	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)	-	Total Marks	100
Teaching Hours/Week (L:T:P: S)**	2:2:2:0	Exam Hours	03+02
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04
 To enable students to a applications. To develop an intuitive restriction of the students in the students of the students in the students of the stu	acquire knowledge on principle	s of chemistry f	or engineering
 To develop an intuitive to of engineering. To provide students with societal problems. 	a solid foundation in analytical r	easoning required	d to solve
Teaching-Learning Process These are sample Strategies, w course outcomes and make Tea • Tutorial & remedial clas • Demonstration of conce • Experiments in laborato • Use of ICT – Online vide • Use of Google classroom • Conducting Make up cla	which teacher can use to accelerate aching –Learning more effective sses for needy students of small b epts either by building models or pries using non- conventional me eos, online courses in for assignments/Notes ass / Bridge courses for needy stu	e the attainment o atches (not regul by industry visit thods dents	of the various ar T/R)
 Publication of paper in 	conference or journal on Teachin	g & Learning Prod	cess
Module-1: E	nergy; Source, Conversion and	storage (8 hr)	
Fuels: Introduction, calorific numerical problems. Green fuels: Introduction, pow High energy fuels: Production, Energy devices: Introduction, ion battery and methanol-oxyg Self-learning: Plastic recycling	value, determination calorific ver alcohol, synthesis and applica n (water electrolysis), advantages , construction, working, and appl gen fuel cell.	value using bon tions of biodiesel and storage of hy ications of Photo	ıb calorimeter, /drogen. voltaic cells, Li- ts.
Module-2	: Corrosion science and engine	ering (8 hr)	
Introduction, electrochemical differential aeration (waterline control: Metal coating-galvar protection-sacrificial anode r penetration rate (CPR)-numer Metal finishing: Introduction, decorative). Electroless plating Self-learning: Factors affecting electrodeposit (Current densit	theory of corrosion, types of e and pitting), stress corrosion (ca nization, surface conversion council nethod. Corrosion testing by w ical problems. , technological importance, electro g: Introduction, electroless plating ing the rate of corrosion, Factors in y, concentration of metal ion, pH,	of corrosion-diff austic embrittlem ating-anodization weight loss meth coplating of chron g of nickel. influencing the na and temperature	erential metal, ent). Corrosion and cathodic hod. Corrosion nium (hard and ature of quality).
Module-3: Mac	romolecules for engineering ap	plications (8 hr	
Polymers : Introduction, meth average, numerical problems, polyvinylchloride (CPVC) and p	ods of polymerization, molecular synthesis, properties and indus polystyrene.	weight, number a trial applications	average, weight of Chlorinated

Fibers: Introduction, synthesis, properties and industrial applications of Kevlar and Polyester. **Plastics:** Introduction, synthesis, properties and industrial applications of poly(methyl methacrylate) (PMMA) and Teflon.

Composites: Introduction, properties and industrial applications of carbon based reinforced materials and metal matrix polymer composites.

Lubricants: Introduction, classification, properties and application of lubricants.

Self-learning: Biodegradable polymer: Introduction, synthesis, properties and application of

^{*} NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

poly lactic acid (PLA).

Module-4: Phase rule and Analytical techniques (8 hr)

Phase rule: Introduction, Definition of terms: phase, components, degree of freedom, phase rule equation. Phase diagram: Two component-lead-silver system.

Analytical techniques: Introduction, principle, instrumentation of potentiometric sensors; its application in the estimation of iron, Optical sensors (colorimetric); its application in the estimation of the copper, pH-sensor (Glass electrode); its application in the determination of pH of beverages.

Self-learning: Determination of viscosity of biofuel and its correlation with temperature.

Module-5: Materials for mechanical applications (8 hr)

Alloys: Introduction, classification, composition, properties and application of Stainless Steel, Solders, Brass and Alnico.

Ceramics: Introduction, classification based on chemical composition, properties and applications of perovskites (CaTiO₃).

Nanochemistry: Introduction, size dependent properties of nanomaterial (surface area, electrical, optical and thermal), synthesis of nanoparticles by sol-gel, and co-precipitation method. **Nanomaterials:** Introduction, properties and engineering applications of carbon nanotubes and graphene.

Self-learning: Abrasives: Introduction, classification, properties and application of silicon carbide (carborandum).

PRACTICAL MODULE

<u> A – Demonstration (any two) offline/virtual:</u>

A1. Synthesis of polymer

A2. Quantitative estimation of Aluminium by precipitation method

A3. Synthesis of iron oxide nanoparticles

A4. Estimation of total hardness of water by EDTA method

<u>B – Exercise (compulsorily any 3 to be conducted):</u>

B1. Conductometric estimation of acid mixture

B2. Potentiometric estimation of FAS using K₂Cr₂O₇

B3. Determination of pKa of vinegar using pH sensor (Glass electrode)

B4. Determination of rate of corrosion of mild steel by weight loss method

<u>*C* – Structured Enquiry (compulsorily any 3 to be conducted):</u>

C1. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)

C2. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)

C3. Estimation of iron in TMT bar by diphenyl amine method

C4. Estimation of **Sodium present in soil/effluent sample** using flame photometer

<u> D – Open Ended Experiments (any two):</u>

D1. Gravimetric estimation of gypsum in Portland cement

D2. Electroplating of desired metal on substrate

D3. Determination of COD of an industrial effluent sample

D4. Analysis of cement for its components

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

ne ene e	
CO1	Identify the terms and processes involved in scientific and engineering applications
CO2	Explain the phenomena of chemistry to describe the methods of engineering processes
CO3	Solve for the problems in chemistry that are pertinent in engineering applications
CO4	Apply the basic concepts of chemistry to explain the chemical properties and processes
CO5	Analyze properties and processes associated with chemical substances in multidisciplinary
	situations

Semester End Examination(SEE): SEE will have two component Theory Examination and Practical Examination Theory Examination;

- Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)
- The question paper shall be set for 100 marks. The medium of the question paper shall be English). The duration of SEE is 03 hours.

The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 30 marks**

• There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Practical Examination;

- SEE marks for the practical course is **100 Marks**.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and **scored marks shall be scaled down to 20 marks** (however, based on course type, rubrics shall be decided by the examiners)
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
- The duration of SEE is 02 or 03 hours

Note:

- Students have to appear in both theory and practical components of CIE and SEE and score a minimum of 40% of the maximum marks of CIE and a minimum of 35% of the maximum marks of SEE. An average of a minimum 40% of the maximum marks of course (100 marks) to pass the course.
- **2.** Passing is CIE is compulsory to become eligible to appear for SEE
- 3. In SEE passing both theory and practical examinations is compulsory.
- **4.** If a student fails in any one of the components (Theory/Practical) then he/she has to reappear in the next semester for both components (i.e theory and practical) and pass the both the components.

Electrical & Electronics Engineering Stream (Chemistry group)

Course Title: Chemistry for EEE	Stream		
Course Code:	22CHEE12/22	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/Week (L:T:P: S)**	2:2:2:0	Exam Hours	03+02
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04
Course objectives			
• To enable students to a	acquire knowledge on principle	s of chemistry f	for engineering
applications.		5	0 0
• To develop an intuitive i	inderstanding of chemistry by er	nnhasizing the re	elated branches
of engineering	inderstanding of enemistic sy er		
To provide students with	a colid foundation in analytical r	ooconing roquiro	d to colvo
• To provide students with	a solid louidation in analytical fo	easoning require	u to solve
societal problems.			
Teaching-Learning Process			
These are sample Strategies, w	which teacher can use to accelerate	e the attainment of	of the various
course outcomes and make Te	aching –Learning more effective		
Tutorial & remedial class	sses for needy students of small b	atches (not regul	ar T/R)
Demonstration of conce	epts either by building models or	by industry visit	
 Experiments in laborate 	ories using non- conventional me	thods	
• Use of ICT Online vide	as online courses	liibus	
• Use of Coople closere	Sos, onnine courses		
Use of Google classroon	n for assignments/Notes		
Conducting Make up cla	iss / Bridge courses for needy stu	dents	
Publication of paper in	conference or journal on Teaching	g & Learning Pro	cess
MODULE 1:	Chemistry of electronic ma	aterials (8hr)	
Conductors and Insulators: In	troduction, principle with example	es. semiconductor	s- production of
electronic grade silicon-Czochra	lski process (CZ) and float zone (E	Z) methods.	F
Polymers. Introduction Molec	ular weight - Number average	weight average	and numerical
problems Conducting polym	ers synthesis and conducting	mechanism of	nolvacetylene
Propagation propagtion and comp	margial applications of graphana av	ido	poryacetylene.
PCP . Electrologo ploting Intro	duction Dringingle of Electrology	lut.	the mean feature
PCD: Electroless plating – mire	buction, Principle of Electroless p	lating - copper in	the manufacture
of double-sided PCB.			
Self-Study Components: Tech	nological importance of metal fin	nishing and disti	nction between
electroplating and Electroless	plating.		
MODULE 2: Energy conv	ersion and storage (8hr)		
Batteries: Introduction, class	sification of batteries, compone	nts, constructior	n, working and
applications of modern batter	ries: Na-ion battery, solid state b	attery (Li-polym	er battery) and
flow battery (Vanadium redox	flow battery).	J J J J J J J J J J J J J J J J J J J	, , , , , , , , , , , , , , , , , , ,
Fuel cells : Introduction con	struction working and applica	tions of methan	ol-oxygen and
nolymor electrolyte fuel cell	istraction, working and apprica	cions of meenan	ior oxygen and
Solar onorgy Introduction in	anortance of color DV coll constru	uction and working	ng color DV coll
Solar ellergy: Incloduccion, in	iportance of solar PV cen, constitu		lig solal PV cell,
advantages and disadvantages		•.	1 .
Self-Study Components: Elect	rodes for electrostatic double lay	er capacitors, pse	eudo capacitors,
and hybrid capacitor.			
MODULE 3: Corrosion sc	ience and e-waste manage	ment (8hr)	
Corrosion chemistry: Introd	fuction electrochemical theory	of corrosion ty	nes-differential
metal differential aeration co	prosion control-galvanization a	nodization and s	acrificial anode
method Correction popetration	rate (CDD), introduction and an	morical problem	
E waste management. Interes	luction courses times of offecte	of a wasta ar	wironmont on J
E-waste management: introc	inclion, sources, types or, effects	or e-waste on er	ivironment and
numan nearth, methods of disp	posal, advantages of recycling, ex	traction of coppe	r and gold from

Self-Study Components: Recycling of PCB and battery components

^{*} NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

MODULE 4: Nanomaterials and Display systems (8hr)

Nanomaterials: Introduction, size dependent properties of nanomaterials (Surface area, Catalytic, Conducting), preparation of nanomaterials by sol-gel and co-precipitation method with example. Introduction, properties and applications- nanofibers, nanophotonics, nanosensors,

Display systems: Liquid crystals - Introduction, classification, properties and application in Liquid Crystal Displays (LCD's). properties and application in Organic light emitting diodes (OLED's), Quantum Light emitting diodes (QLED's).

Perovskite materials- Introduction, properties and applications in optoelectronic devices

Self-Study Components: Properties and Electrochemical applications of carbon nanotubes and graphene.

MODULE 5: Sensors in Analytical techniques (8hr)

Electrode system: Introduction, types of electrodes, Ion selective electrode – definition, construction, working and applications of glass electrode. Determination of pH using glass electrode. Reference electrode: Introduction, calomel electrode – construction, working and applications of calomel electrode. Concentration cell – Definition, construction and Numerical problems.

Sensors: Introduction, working principle and applications of conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors

Analytical techniques: Introduction, principle and instrumentation: Colorimetric sensors – estimation of copper, Potentiometric sensors – estimation of iron, Conductometric sensors – estimation of weak acid.

Self-Study Components: IR and UV- visible spectroscopy.

PRACTICAL MODULE

<u>A – Demonstration (any two) offline/virtual:</u>

A1. Synthesis of polymer.

A2. Quantitative estimation of aluminum by precipitation as basic sulphate.

A3. Synthesis of iron oxide nanoparticles by precipitation method.

A4. Electroplating of copper on metallic objects.

<u>B – Exercise (compulsorily any 3 to be conducted):</u>

B1. Conductometric estimation of acid mixture

B2. Potentiometric estimation of FAS using K₂Cr₂O₇

B3. Determination of pKa of vinegar using pH sensor (Glass electrode)

B4. Determination of rate of corrosion of mild steel by weight loss method

<u>*C* – Structured Enquiry (compulsorily any 3 to be conducted):</u>

C1. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)

C2. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)

C3. Estimation of iron in TMT bar by diphenyl amine method

C4. Estimation of **Sodium present in soil/effluent sample** using flame photometer

<u>D – Open Ended Experiments (any two):</u>

D1. Estimation of metal in e-waste by optical sensors.

D2. Electroless plating of Nickle on Copper

D3. Determination of glucose by electrochemical sensors.

D4. Synthesis of polyaniline and its conductivity measurement

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Identify the terms and processes involved in scientific and engineering applications
CO2	Explain the phenomena of chemistry to describe the methods of engineering processes
CO3	Solve for the problems in chemistry that are pertinent in engineering applications
CO4	Apply the basic concepts of chemistry to explain the chemical properties and processes
CO5	Analyze properties and processes associated with chemical substances in multidisciplinary
	situations

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.
- The laboratory test **(duration 02/03 hours)** at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and **scaled down to 05 marks**.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

Semester End Examination(SEE):

SEE will have two component Theory Examination and Practical Examination Theory Examination;

- Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)
- The question paper shall be set for 100 marks. The medium of the question paper shall be English). The duration of SEE is 03 hours.

The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 30 marks**

• There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Practical Examination;

- SEE marks for the practical course is **100 Marks**.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and **scored marks shall be scaled down to 20 marks** (however, based on course type, rubrics shall be decided by the examiners)
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
- The duration of SEE is 02 or 03 hours

Note:

- Students have to appear in both theory and practical components of CIE and SEE and score a minimum of 40% of the maximum marks of CIE and a minimum of 35% of the maximum marks of SEE. An average of a minimum 40% of the maximum marks of course (100 marks) to pass the course.
- **2.** Passing is CIE is compulsory to become eligible to appear for SEE
- **3.** In SEE passing both theory and practical examinations is compulsory.

If a student fails in any one of the components (Theory/Practical) then he/she has to reappear in the next semester for both components (i.e theory and practical) and pass the both the components.

Mechanical Engineering Stream (Chemistry group)

Course Title: Applied Chemistry	r for MES	1	
Course Code:	22CHEM12/22	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/Week (L:T:P: S)**	2:2:2:0	Exam Hours	03+02
Course objectives	40 hours Theory + 10-12 Lab slots	Creats	04
course objectives			.
• To enable students to a	acquire knowledge on principle	s of chemistry i	for engineering
		11	1. 11 1
• To develop an intuitive i	inderstanding of chemistry by er	nphasizing the re	elated branches
of engineering.			
 To provide students with 	a solid foundation in analytical r	easoning require	d to solve
societal problems.			
Teaching-Learning Process			
These are sample Strategies, w	which teacher can use to accelerate	e the attainment	of the various
course outcomes and make Te	aching –Learning more effective		
Tutorial & remedial class	sses for needy students of small b	atches (not regul	ar T/R)
Demonstration of conce	epts either by building models or	by industry visit	
Experiments in laborate	ories using non- conventional me	thods	
• Use of ICT – Online vide	eos, online courses		
• Use of Google classroom	n for assignments/Notes		
• Conducting Make up cla	ass / Bridge courses for needy stu	dents	
Publication of paper in	conference or journal on Teachin	g & Learning Pro	cess
Module-1: E	nergy: Source, Conversion and	storage (8 hr)	
Fuels: Introduction calorific	value determination calorific	value using hon	nh calorimeter
numerical problems	value, acternination calornic	value using bon	ib calorinecci,
Green fuels: Introduction nov	ver alcohol synthesis and applica	tions of highlese	1
High energy fuels : Production	n (water electrolysis) advantages	and storage of h	vdrogen
Fnergy devices : Introduction	construction working and appl	ications of Photo	voltaic cells Li-
ion battery and methanol-oxy	en fuel cell		voltare cells, El
Self-learning: Plastic recycling	g to fuels and its monomers or oth	her useful produc	rts
Module-2	Corrosion science and engine	ering (8 hr)	
Introduction alectrochemical	theory of correction types	ering (o in j	forantial motal
differential aeration (waterline	and nitting) strong correction (or	oustic ombrittlor	erencial metal,
control. Motal coating galvar	e and pitting), stress corrosion (ca	austic empiritien	and cathodia
protection socrificial anode	method Corregion testing by a	weight loss met	had Corregion
protection-sacrificial alloue i	ical problems	weight loss met	
Motal finishing: Introduction	technological importance clock	onlating of chron	nium (hand and
decorative) Electrologe plating	, technological importance, electr	oplating of children	mum (naru anu
Solf loarning: Eastern offestir	g: Introduction, electroless plating	g OI IIICKEI.	ature of quality
Self-learning: Factors allectin	Ig the rate of corrosion, Factors	innuencing the h	
	y, concentration of metal ion, pH,	and temperature	·).
Module-3: Mac	romolecules for engineering ap	plications (8 hr	·)
Polymers : Introduction, meth	ods of polymerization, molecular	weight, number	average, weight
average, numerical problems,	synthesis, properties and indus	trial applications	; of Chlorinated
polyvinylchloride (CPVC) and	polystyrene.		
Fibers: Introduction, synthesis	s, properties and industrial applic	ations of Kevlar a	and Polyester.
Plastics: Introduction, synth	nesis, properties and industria	l applications	of poly(methyl
methacrylate) (PMMA) and Te	flon.		
Composites: Introduction, pr	operties and industrial applicati	ons of carbon ba	ased reinforced
materials and metal matrix po	lymer composites.		
Lubricants: Introduction, clas	sification, properties and applicat	tion of lubricants	
Self-learning: Biodegradable	e polymer: Introduction, synthes	is, properties an	d application of

^{*} NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

poly lactic acid (PLA).

Module-4: Phase rule and Analytical techniques (8 hr)

Phase rule: Introduction, Definition of terms: phase, components, degree of freedom, phase rule equation. Phase diagram: Two component-lead-silver system.

Analytical techniques: Introduction, principle, instrumentation of potentiometric sensors; its application in the estimation of iron, Optical sensors (colorimetric); its application in the estimation of the copper, pH-sensor (Glass electrode); its application in the determination of pH of beverages.

Self-learning: Determination of viscosity of biofuel and its correlation with temperature.

Module-5: Materials for mechanical applications (8 hr)

Alloys: Introduction, classification, composition, properties and application of Stainless Steel, Solders, Brass and Alnico.

Ceramics: Introduction, classification based on chemical composition, properties and applications of perovskites (CaTiO₃).

Nanochemistry: Introduction, size dependent properties of nanomaterial (surface area, electrical, optical and thermal), synthesis of nanoparticles by sol-gel, and co-precipitation method. **Nanomaterials:** Introduction, properties and engineering applications of carbon nanotubes and graphene.

Self-learning: Abrasives: Introduction, classification, properties and application of silicon carbide (carborandum).

PRACTICAL MODULE

<u> A – Demonstration (any two) offline/virtual:</u>

A1. Synthesis of polymer

A2. Preparation of urea formaldehyde resin

A3. Synthesis of iron oxide nanoparticles

A4. Determination of acid value of biofuel

<u>B – Exercise (compulsorily any 3 to be conducted):</u>

B1. Conductometric estimation of acid mixture

B2. Potentiometric estimation of FAS using K₂Cr₂O₇

B3. Determination of pKa of vinegar using pH sensor (Glass electrode)

B4. Determination of rate of corrosion of mild steel by weight loss method

<u>C - Structured Enquiry (compulsorily any 3 to be conducted):</u>

C1. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)

C2. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)

C3. Estimation of iron in TMT bar by diphenyl amine method

C4. Estimation of Sodium present in soil/effluent sample using flame photometry

<u>D – Open Ended Experiments (any two):</u>

D1. Estimation of percentage of iron in steel

D2. Electroplating of desired metal on substrate

D3. Synthesis of biodiesel

D4. Synthesis of graphene oxide nano particle

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Identify the terms and processes involved in scientific and engineering applications
CO2	Explain the phenomena of chemistry to describe the methods of engineering processes
CO3	Solve for the problems in chemistry that are pertinent in engineering applications
CO4	Apply the basic concepts of chemistry to explain the chemical properties and processes
CO5	Analyze properties and processes associated with chemical substances in multidisciplinary
	situations

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.
- The laboratory test (duration 02/03 hours) at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IC for **20 marks**.

Semester End Examination(SEE):

SEE will have two component Theory Examination and Practical Examination Theory Examination;

- Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)
- The question paper shall be set for 100 marks. The medium of the question paper shall be English). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 30 marks**.

• There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Practical Examination;

- SEE marks for the practical course is **100 Marks**.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and **scored marks shall be scaled down to 20 marks** (however, based on course type, rubrics shall be decided by the examiners)
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
- The duration of SEE is 02 or 03 hours

Note:

- **1.** Students have to appear in both theory and practical components of CIE and SEE and score a minimum of 40% of the maximum marks of CIE and a minimum of 35% of the maximum marks of SEE. And average of minimum 40% of out of 100 marks to pass the course.
- 2. Passing is CIE is compulsory to become eligible to appear for SEE
- **3.** In SEE passing both theory and practical examinations is compulsory.
- **4.** If a student fails in any one of the components (Theory/Practical) then he/she has to reappear in next semester for both the components i.e theory and practical and pass the both the components.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher (2022) Bengaluru, ISBN 978-93-85155-70-3
- 2. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. 2010
- 3. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan.
- 4. Polymer Science, V R Gowariker, 3rd Edition
- 5. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.
- 6. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press 2002- 1st Edition.
- 7. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- 8. Polymer chemistry, by Anil Kumar P V
- 9. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 2014-3rd Edition.
- 10. Principles of nanotechnology, Phanikumar, Scitech publications, 2010-2nd Edition.
- 11. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12th Edition, 2011.
- 12. A Text Book of Engineering Chemistry, R.V. Gadag and Nitthyananda Shetty, I.K. International Publishing house. 2nd Edition, 2016.
- 13. Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah & Pushpa Iyengar., Subash Publications, Bangalore.5th Edition, 2014
- 14. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 15. Corrosion Engineering, M.G. Fontana, N.D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996.

Course Title: Chemistry for CSE			
Course Code:	22CHEE12/22	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/Week (L:T:P: S)*	2:2:2:0	Exam Hours	03+02
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04
Course objectives			
• To enable students to applications.	acquire knowledge on principle	es of chemistry	for engineering
 To develop an intuitive of engineering. 	understanding of chemistry by e	mphasizing the r	elated branches
 To provide students with societal problems. 	a solid foundation in analytical r	easoning require	d to solve
Teaching-Learning Process			
These are sample Strategies, w	which teacher can use to accelerat	e the attainment	of the various
course outcomes and make Te	aching –Learning more effective		
Tutorial & remedial cla	sses for needy students of small b	atches (not regu	lar T/R)
Demonstration of conce	epts either by building models or	by industry visit	, ,
Experiments in laborat	ories using non- conventional me	thods	
• Use of ICT – Online vide	eos, online courses		
Use of Google classroor	n for assignments/Notes		
Conducting Make up classified	ass / Bridge courses for needy stu	idents	
 Publication of paper in 	conference or journal on Teachin	σ& Learning Pro	CASS
	1. Soncors and onorgy Sys	tome (Qhr)	0035
Songong: Introduction working	ringinla and applications of condu	etematria concorra	Flaatraahamiaal
sensors. Thermometric sensor	principle and applications of condu	for the manual	rement of DO
sensors, Thermometric sensors, and Optical sensors. Sensors for the measurement of DO.			
sensors for SOx NOx Disposal	ble sensors in the detection of biom	plecules and pestic	vides
Energy Systems: Introduction	to batteries. Construction working	a and application	s of Lithium ion
and Sodium ion batteries. Over	tum data consistized color colla (OI	SSC'a) Dringin	a Dropartias and
and Sodium fon batteries. Quar	itum dots sensitized solar cells (QI	JSSC 8)- Principle	e, Properties and
Applications			~ 1
Self -Learning Topics: Type of	f electrochemical sensors. Gas sens	sor- O_2 sensor, bio	osensor- Glucose
sensors,			
MODULE 2: Mat	erials for memory and disp	olay systems (8hr)
Introduction, Basic concepts	of electronic memory, History	of organic/poly	mer electronic
memory devices, Classification	n of electronic memory devices, t	ypes of organic r	nemory devices
(organic molecules, polyme	eric materials, organic-inorgan	ic hybrid mate	erials), organic
superconducting materials.		-	
Photoactive and electroact	ive materials Nanomaterials	organic mate	rials used in
antoplastronia devigos Orga	nie naterials, Nationaterials,	organia nhotoro	ltais uscu III
optoelectronic devices, orga	inic photovoltaics, alternative	organic photovo	
Composition, Characteristics,	working and applications of I	liquid Crystal D	isplays (LCD's),
Organic light emitting diodes	(OLED's), Quantum Light emitting	g diodes (QLED's), Light emitting
electrochemical cells.			
Self -Learning Topics:			
Properties and functions of S	Silicon (Si), Germanium (Ge), Co	opper (Cu), Alum	ninum (Al), and
Brominated flame retardants i	in computers		

MODULE 3: Corrosion and electrode system (8hr)

* NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

Corrosion chemistry: Introduction, electrochemical theory of corrosion, types-differential metal, differential aeration, corrosion control-galvanization, anodization and sacrificial anode method. Corrosion penetration rate (CPR) - introduction and numerical problem.

Electrode system: Introduction, types of electrodes, Ion selective electrode – definition, construction, working and applications of glass electrode. Determination of pH using glass electrode. Reference electrode: Introduction, calomel electrode – construction, working and applications of calomel electrode. Concentration cell – Definition, construction and Numerical problems.

Analytical techniques: Introduction, principle and instrumentation: Conductometry – estimation of weak acid. Potentiometry – estimation of iron.

Self-Study Components: IR and UV- visible spectroscopy.

MODULE 4: Polymers and Green fuels (8hr)

Polymers: Introduction, Molecular weight - Number average, weight average and numerical problems, Conducting polymers – synthesis and conducting mechanism of polyacetylene and commercial applications. Preparation, properties, and commercial applications of graphene oxide.

Green fuels: Introduction, construction and working of solar photovoltaic cell, advantages, and disadvantages. Generation of energy (green hydrogen) from water electrolysis, advantages, and storage of hydrogen.

Self -Learning Topics: Regenerative fuel cells

MODULE 5: E-Waste Management (8hr)

Introduction, sources of e-waste, Composition, Characteristics, and Need of e-waste management. E - waste. Toxic materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste, recycling and recovery, different approaches of recycling (separation, Thermal treatments, hydrometallurgical extraction, pyrometallurgical methods, direct recycling). Extraction of gold from E-waste. Role of stake holders in environmental management of e-waste (producers, consumers, recyclers, and statutory bodies).

Self -Learning Topics: Impact of heavy metals on environment and human health.

PRACTICAL MODULE

<u>A – Demonstration (any two) offline/virtual:</u>

A1. Chemical Structure drawing using software: ChemDraw or ACD/ChemSketch

- A2. Estimate the amount of copper in e-waste by optical sensors (colorimetry)
- A3: Synthesis of Iron-oxide Nanoparticles

A4. Electrolysis of water

<u>B – Exercise (compulsorily any 3 to be conducted):</u>

- B1. Conductometric estimation of acid mixture
- B2. Potentiometric estimation of FAS using K₂Cr₂O₇

B3. Determination of pKa of vinegar using pH sensor (Glass electrode)

B4. Determination of rate of corrosion of mild steel by weight loss method

<u>*C* – Structured Enquiry (compulsorily any 3 to be conducted):</u>

C1. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)

- C2. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)
- C3. Estimation of iron in TMT bar by diphenyl amine method

C4. Estimation of Sodium present in soil/effluent sample using flame photometer

<u>D- Open Ended Experiments (any two):</u>

D1: Evaluation of acid content in beverages by using pH sensors and simulation.

D2. Construction of photovoltaic cell.

D3. Design an experiment to Identify the presence of proteins in given sample.

D4. Searching suitable PDB file and target for molecular docking

Computer Science Engineering Stream (Chemistry group)

Cours	e outcome (Course Skill Set)
At the	end of the course the student will be able to:
CO1	Identify the terms and processes involved in scientific and engineering applications
CO2	Explain the phenomena of chemistry to describe the methods of engineering processes
CO3	Solve for the problems in chemistry that are pertinent in engineering applications
CO4	Apply the basic concepts of chemistry to explain the chemical properties and processes
CO5	Analyze properties and processes associated with chemical substances in multidisciplinary
	situations

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

Two Unit Tests each of 20 Marks (duration 01 hour)

- First test after the completion of 30-40 % of the syllabus
- Second test after completion of 80-90% of the syllabus

One Improvement test before the closing of the academic term may be conducted if necessary. However best two tests out of three shall be taken into consideration.

Two assignments each of 10 Marks

The teacher has to plan the assignments and get them completed by the students well before the closing of the term so that marks entry in the examination portal shall be done in time. Formative (Successive) Assessments include Assignments/Quizzes/Seminars/ Course projects/Field surveys/ Case studies/ Hands-on practice (experiments)/Group Discussions/ others. The Teachers shall choose the types of assignments depending on the requirement of the course and plan to attain the Cos and POs. (to have a less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course). CIE methods /test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

The sum of two tests, two assignments, will be out of 60 marks and will be scaled down to 30 marks

CIE for the practical component of the Integrated Course

• On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.

• The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and **scaled down to 15 marks**.

• The laboratory test (duration 02/03 hours) at the end of the 14th /15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

Semester End Examination(SEE):

SEE will have two component Theory Examination and Practical Examination Theory Examination;

- Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)
- The question paper shall be set for 100 marks. The medium of the question paper shall be English). The duration of SEE is 03 hours.

The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 30 marks**

• There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

Practical Examination;

- SEE marks for the practical course is **100 Marks**.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and **scored marks shall be scaled down to 20 marks** (however, based on course type, rubrics shall be decided by the examiners)
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.
- The duration of SEE is 02 or 03 hours

Note:

- Students have to appear in both theory and practical components of CIE and SEE and score a minimum of 40% of the maximum marks of CIE and a minimum of 35% of the maximum marks of SEE. An average of a minimum 40% of the maximum marks of course (100 marks) to pass the course.
- **2.** Passing is CIE is compulsory to become eligible to appear for SEE
- **3.** In SEE passing both theory and practical examinations is compulsory.

If a student fails in any one of the components (Theory/Practical) then he/she has to reappear in the next semester for both components (i.e theory and practical) and pass the both the components.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher (2022) Bengaluru, ISBN 978-93-85155-70-3
- 2. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. 2010
- 3. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan.
- 4. Polymer Science, V R Gowariker, 3rd Edition
- 5. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.